
Scheduling in Linux – Part 1

Acknowledgement

The example of O(1) scheduler is borrowed from the slides of the same course offered by
Prof. Sandip Chakraborty in earlier years (very slight changes done)

The materials for some of the other slides are borrowed from the same source

Types of Tasks
 Interactive
 Requires fast response time
 May not require CPU for long durations, but when it needs the CPU, it should be

given asap
 So requires CPU in small bursts

 Ex: GUI tasks, Word processing, making a powerpoint slide,…
 Batch
 Requires long CPU times, but response time is not very important
 Throughput is more important
 Ex: scientific computations, …

 Real Time
 Required to be completed within some time

Goals of a Scheduler
 Real time tasks should have higher priority over other tasks
 A higher priority job should run as soon as possible
 Lower priority jobs should not be starved by higher priority jobs
 Interactive tasks should have fast response time and should not be prempted

while running
 Context switches should be reduced

Process Priorities in Linux
 0-99: real time tasks
 Higher value means higher priority

 100 – 139: non-real time tasks
 Actually processes get a nice value between -20 to +19
 -20 maps to 100
 +19 maps to 139
 Higher nice value means lower priority (you are being “nice” to other processes )

 Default nice value of a process is 0
 Maps to 120

 Thus, complete internal range of priority values of Linux is 0-139

Scheduling Classes
 Every process is attached to a scheduling class
 Five scheduling classes (in order of lower to higher priority)
 Idle (/kernel/sched/idle.c)
 Fair (/kernel/sched/fair.c)
 Real time (/kernel/sched/rt.c)
 Deadline (/kernel/sched/deadline.c)

 A task in rt class will always preempt a task in fair class, which will always
preempt the idle task etc.

 There is also a stop class in the list of scheduling classes for use in stopping the
cpu for some specific cases (highes priority class)

Scheduling Policies
 Every class has one or more policies associated with it
 For idle class
 SCHED_IDLE

 For some very low priority background processes

 For fair class
 SCHED_OTHER/SCHED_NORMAL
 SCHED_BATCH

 For real time class
 SCHED_FIFO
 SCHED_RR

 For deadline class
 SCHED_DEADINE

 Scheduling policies have associated algorithms
 Ex: for fair class, SCHED_NORMAL policy, completely fair scheduler (CFS) is

the algorithm

 We will study SCHED_NORMAL only in detail
 Will come back and talk about the other scheduling classes and policies a bit

at the end

Older Linux Schedulers

Genesis (1991)
 Kernel version 0.01
 A single queue of runnable processes, default is 32 process
 The scheduler iterates over the entire queue to select a task to run
 Check if any alarm is raised for a task, if yes, mark for processing
 Also move the tasks from waiting to running state if alarm raised

 Find the task with the largest unused timeslice and schedule it
 If no such process
 Assign all processes new timeslice values based on priority

 Higher priority gets larger timeslice
 Schedule the one with the largest timeslice

 Very simple, but O(n)
 Did not scale as systems became more powerful and complex

1 void schedule(void) {
2 int i,next,c;
3 struct task_struct ** p;
4
5 /* check alarm, wake up any interruptible tasks
6 that have got a signal */
7 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
8 if (*p) {
9 if ((*p)->alarm && (*p)->alarm < jiffies) {
10 (*p)->signal |= (1<<(SIGALRM-1));
11 (*p)->alarm = 0;
12 }
13 if ((*p)->signal && (*p)->state==TASK_INTERRUPTIBLE)
14 (*p)->state=TASK_RUNNING;
15 }
16

17 /* this is the scheduler proper: */
18 while (1) {
19 c = -1;
20 next = 0;
21 i = NR_TASKS;
22 p = &task[NR_TASKS];
23 while (--i) {
24 if (!*--p)
25 continue;
26 if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
27 c = (*p)->counter, next = i;
28 }
29 if (c) break;
30 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
31 if (*p)
32 (*p)->counter = ((*p)->counter >> 1) + (*p)->priority;
33 }
34 switch_to(next);
35 }

 From comments in Genesis schedule() function 

“'schedule()' is the scheduler function. This is GOOD CODE! There probably won't be
any reason to change this, as it should work well in all circumstances (ie gives IO-
bound processes good response etc)…”.

O(N) Scheduler
 From Kernel versions 2.4 onwards, till before 2.6
 Similar to the Genesis scheduler
 Main change is in the metric used for selecting the next process – Goodness of

a process
 Goodness of a process is calculated as the number of clock-ticks a task had left

plus some weight based on the task’s priority; returns integer values
 -1000: Never select this task to run
 positive number: The goodness value, larger the better
 +1000: A real time process

 No preemption of running process
 So a real time task coming cannot preempt a simple user process

 Has the same problem of scalability
 Needs to loop through all processes
 Goodness computations were costly
 Runqueues can still incur significant locking overhead as no. of processes

increases
 Does not scale to multiprocessors
 Single global queue suffers from ping-pong effect

O(1) Scheduler
 Introduced in Kernel Version 2.6.0 (2003)
 Introduced
 The priority scale (0-139) we discussed and the separation between normal and

real time tasks
 Early preemption:A new runnable task of higher priority can preempt the

currently running process of lower priority
 Dynamic priority for considering interactivity
 Decided based on recent interactivity (how often the process used the CPU in the

past)

 Separate runqueues for each CPU

 Timeslice given for each process
 For priority < 120, timeslice = (140 – priority)*20 milliseconds

otherwise, timeslice = (140 – priority)*5 milliseconds
 Two sets of queues, Active and Expired
 Each set has multiple queues, one for each priority
 So total 140 queues in each set

 At any point of time, schedule from the active set
 A process moves to the expired set when if it uses up its timeslice
 Except in some cases, will discuss

 A new process gets added to the expired set

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice available

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice complete

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Process the array from
top to bottom in
increasing order of the
priority value

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Start scheduling the
processes in their
priority order

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process
is calculated from its
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process
is calculated from its
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts
executing

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts
executing

Timer Interrupts at
2780 clock tick

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The priority of the
process is recalculated
- Niceness
- Interactivity

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process is moved
to the expired array

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Priority update
Shift the process from
active array to expired
array

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

1 3 5

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

If a runqueue for a
priority level is empty,
move to the next
runqueue

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a
priority level is empty,
move to the next
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a
priority level is empty,
move to the next
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

6 9 10

If a process is
interrupted because of
the arrival of a higher
priority process, or for
other reason, move it
to the end of the
runqueue

MAX_PRI
O

MIN_PRIO

12

11

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process is
interrupted because of
the arrival of a higher
priority process, or for
other reason, move it
to the end of the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a
system call for I/O,
move it to the
waitqueue from the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a
system call for I/O,
move it to the
waitqueue from the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

Wait Queue

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Once the I/O is
complete, move the
task to the expired
array (or active array
when the task needs
immediate scheduling)

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Continue the execution
of all the processes
from the active array

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Continue the execution
of all the processes
from the active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Make the
Expired Array as
the Active array

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Make the
Expired Array as
the Active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

1

2

3

5

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Only thing that remains:
How do we check that a

higher priority process has
arrived in the Active Array?

Use a bitmap

struct prio_array {

/* number of tasks */
int nr_active;

/* priority bitmap */
unsigned long bitmap[BITMAP_SIZE];

/* priority queues */
struct list_head queue[MAX_PRIO];

};

Dynamic Priority
 Good thing seen so far
 Timeslices computed based on priority
 Fast access to runqueues

 Not so good
 No distinction between interactive and batch jobs

 Dynamic priority: allows this distinction
 Dynamically increase priority level of interactive jobs
 Based on average sleep time of a process
 Sleep time added to a variable when a process wakes up
 CPU time subtracted from the variable when a process runs

 Dynamic Priority
 MAX(100, min(static priority – bonus +5), 139)
 Bonus is a value between 0 and 10 set based on average sleep time
 I/O bound processes sleep more, so should have higher priority when they are

runnable with higher bonus value
 Opposite for CPU-bound

 The runqueues are arranged based on this dynamic priorities actually
 Other optimization
 Define a process as interactive if(bonus – 5 ≥ (static priority)/4 – 28)
 Add an interactive process back to end of active queue with a fresh quanta when

it finishes its quanta
 But should this not cause starvation to lower level queues?
 Makes certain checks on the expired queue (what do you think should be checked?)
 Also, if an interactive task keeps on running, its interactivity will go down

 Note that dynamic priority does not affect the timeslice, that is still based on
the static priority

 Why is this called O(1) scheduler?
 Problems with the O(1) scheduler
 Complex heuristics for interactivity check, did not work well in practice
 Managing 2 x 140 runqueues is complex
 Codebase was complex and difficult to debug

 Replaced by Completely Fair Scheduler (CFS) in 2007 (Kernel version
2.6.23)

	Scheduling in Linux – Part 1
	Slide Number 2
	Types of Tasks
	Goals of a Scheduler
	Process Priorities in Linux
	Scheduling Classes
	Scheduling Policies
	Slide Number 8
	Older Linux Schedulers
	Genesis (1991)
	Slide Number 11
	Slide Number 12
	Slide Number 13
	O(N) Scheduler
	Slide Number 15
	O(1) Scheduler
	Slide Number 17
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Slide Number 55
	Dynamic Priority
	Slide Number 57
	Slide Number 58
	Slide Number 59

