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Types of Tasks
 Interactive 
 Requires fast response time
 May not require CPU for long durations, but when it needs the CPU, it should be 

given asap
 So requires CPU in small bursts

 Ex: GUI tasks, Word processing, making a powerpoint slide,…
 Batch 
 Requires long CPU times, but response time is not very important
 Throughput is more important
 Ex: scientific computations, …

 Real Time
 Required to be completed within some time



Goals of a Scheduler
 Real time tasks should have higher priority over other tasks
 A higher priority job should run as soon as possible
 Lower priority jobs should not be starved by higher priority jobs
 Interactive tasks should have fast response time and should not be prempted

while running
 Context switches should be reduced



Process Priorities in Linux
 0-99: real time tasks
 Higher value means higher priority

 100 – 139: non-real time tasks
 Actually processes get a nice value between -20 to +19
 -20 maps to 100
 +19 maps to 139
 Higher nice value means lower priority (you are being “nice” to other processes )

 Default nice value of a process is 0
 Maps to 120

 Thus, complete internal range of priority values of Linux is 0-139



Scheduling Classes
 Every process is attached to a scheduling class
 Five scheduling classes (in order of lower to higher priority)
 Idle (/kernel/sched/idle.c)
 Fair (/kernel/sched/fair.c)
 Real time (/kernel/sched/rt.c)
 Deadline (/kernel/sched/deadline.c)

 A task in rt class will always preempt a task in fair class, which will always 
preempt the idle task etc.

 There is also a stop class in the list of scheduling classes for use in stopping the 
cpu for some specific cases (highes priority class)



Scheduling Policies
 Every class has one or more policies associated with it
 For idle class
 SCHED_IDLE

 For some very low priority background processes

 For fair class
 SCHED_OTHER/SCHED_NORMAL
 SCHED_BATCH

 For real time class
 SCHED_FIFO
 SCHED_RR

 For deadline class
 SCHED_DEADINE



 Scheduling policies have associated algorithms
 Ex: for fair class, SCHED_NORMAL policy, completely fair scheduler (CFS) is 

the algorithm

 We will study SCHED_NORMAL only in detail
 Will come back and talk about the other scheduling classes and policies a bit  

at the end



Older Linux Schedulers



Genesis (1991)
 Kernel version 0.01
 A single queue of runnable processes, default is 32 process
 The scheduler iterates over the entire queue to select a task to run
 Check if any alarm is raised for a task, if yes, mark for processing
 Also move the tasks from waiting to running state if alarm raised

 Find the task with the largest unused timeslice and schedule it
 If no such process
 Assign all processes new timeslice values based on priority

 Higher priority gets larger timeslice
 Schedule the one with the largest timeslice

 Very simple, but O(n)
 Did not scale as systems became more powerful and complex



1 void schedule(void) {
2 int i,next,c;
3 struct task_struct ** p;
4
5 /* check alarm, wake up any interruptible tasks
6 that have got a signal */
7 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
8 if (*p) {
9 if ((*p)->alarm && (*p)->alarm < jiffies) {
10 (*p)->signal |= (1<<(SIGALRM-1));
11 (*p)->alarm = 0;
12 }
13 if ((*p)->signal && (*p)->state==TASK_INTERRUPTIBLE)
14 (*p)->state=TASK_RUNNING;
15 } 
16



17 /* this is the scheduler proper: */
18 while (1) {
19 c = -1;
20 next = 0;
21 i = NR_TASKS;
22 p = &task[NR_TASKS];
23 while (--i) {
24 if (!*--p)
25 continue;
26 if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
27 c = (*p)->counter, next = i;
28 }
29 if (c) break;
30 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
31 if (*p)
32 (*p)->counter = ((*p)->counter >> 1) + (*p)->priority;
33 }
34 switch_to(next);
35 }



 From comments in Genesis schedule() function 

“'schedule()' is the scheduler function. This is GOOD CODE! There probably won't be 
any reason to change this, as it should work well in all circumstances (ie gives IO-
bound processes good response etc)…”.



O(N) Scheduler
 From Kernel versions 2.4 onwards, till before 2.6
 Similar to the Genesis scheduler
 Main change is in the metric used for selecting the next process – Goodness of 

a process
 Goodness of a process is calculated as the number of clock-ticks a task had left 

plus some weight based on the task’s priority; returns integer values
 -1000: Never select this task to run
 positive number: The goodness value, larger the better
 +1000: A real time process



 No preemption of running process
 So a real time task coming cannot preempt a simple user process

 Has the same problem of scalability
 Needs to loop through all processes
 Goodness computations were costly
 Runqueues can still incur significant locking overhead as no. of  processes 

increases
 Does not scale to multiprocessors
 Single global queue suffers from ping-pong effect



O(1) Scheduler
 Introduced in Kernel Version 2.6.0 (2003)
 Introduced
 The priority scale (0-139) we discussed and the separation between normal and 

real time tasks
 Early preemption:A new runnable task of higher priority can preempt the 

currently running process of lower priority
 Dynamic priority for considering interactivity
 Decided based on recent interactivity (how often the process used the CPU in the 

past)

 Separate runqueues for each CPU



 Timeslice given for each process
 For priority < 120, timeslice = (140 – priority)*20 milliseconds

otherwise, timeslice = (140 – priority)*5 milliseconds
 Two sets of queues, Active and Expired
 Each set has multiple queues, one for each priority
 So total 140 queues in each set

 At any point of time, schedule from the active set
 A process moves to the expired set when if it uses up its timeslice
 Except in some cases, will discuss

 A new process gets added to the expired set



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice available



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice complete



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Process the array from 
top to bottom in 
increasing order of the 
priority value

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Start scheduling the 
processes in their 
priority order

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process 
is calculated from its 
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process 
is calculated from its 
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts 
executing

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts 
executing

Timer Interrupts at 
2780 clock tick

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The priority of the 
process is recalculated
- Niceness
- Interactivity

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process is moved 
to the expired array

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the 
next process for the 
same priority runqueue

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the 
next process for the 
same priority runqueue

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the 
next process for the 
same priority runqueue

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Priority update
Shift the process from 
active array to expired 
array

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

1 3 5

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

If a runqueue for a 
priority level is empty, 
move to the next 
runqueue



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a 
priority level is empty, 
move to the next 
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a 
priority level is empty, 
move to the next 
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

6 9 10

If a process is 
interrupted because of 
the arrival of a higher 
priority process, or for 
other reason, move it 
to the end of the 
runqueue

MAX_PRI
O

MIN_PRIO

12

11

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process is 
interrupted because of 
the arrival of a higher 
priority process, or for 
other reason, move it 
to the end of the 
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a 
system call for I/O, 
move it to the 
waitqueue from the 
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a 
system call for I/O, 
move it to the 
waitqueue from the 
runqueue

MAX_PRI
O

MIN_PRIO

12

6

Wait Queue

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Once the I/O is 
complete, move the 
task to the expired 
array (or active array 
when the task needs 
immediate scheduling)

MAX_PRI
O

MIN_PRIO

12

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Continue the execution 
of all the processes 
from the active array

MAX_PRI
O

MIN_PRIO

12

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Continue the execution 
of all the processes 
from the active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Make the 
Expired Array as 
the Active array

1 3 5



 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Make the 
Expired Array as 
the Active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5



 Reorganize the runqueue data structure

Example

Active Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

1

2

3

5

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Only thing that remains:
How do we check that a 

higher priority process has 
arrived in the Active Array? 

Use a bitmap



struct prio_array {

/* number of tasks */
int nr_active; 

/* priority bitmap */
unsigned long bitmap[BITMAP_SIZE];

/* priority queues */ 
struct list_head queue[MAX_PRIO]; 

};



Dynamic Priority
 Good thing seen so far
 Timeslices computed based on priority
 Fast access to runqueues

 Not so good
 No distinction between interactive and batch jobs

 Dynamic priority: allows this distinction
 Dynamically increase priority level of interactive jobs
 Based on average sleep time of a process
 Sleep time added to a variable when a process wakes up
 CPU time subtracted from the variable when a process runs



 Dynamic Priority
 MAX(100, min(static priority – bonus +5), 139)
 Bonus is a value between 0 and 10 set based on average sleep time
 I/O bound processes sleep more, so should have higher priority when they are 

runnable with higher bonus value
 Opposite for CPU-bound



 The runqueues are arranged based on this dynamic priorities actually
 Other optimization
 Define a process as  interactive if(  bonus – 5 ≥ (static priority)/4 – 28)
 Add an interactive process back to end of active queue with a fresh quanta when 

it finishes its quanta
 But should this not cause starvation to lower level queues?
 Makes certain checks on the expired queue (what do you think should be checked?)
 Also, if an interactive task keeps on running, its interactivity will go down

 Note that dynamic priority does not affect the timeslice, that is still based on 
the static priority



 Why is this called O(1) scheduler?
 Problems with the O(1) scheduler
 Complex heuristics for interactivity check, did not work well in practice
 Managing 2 x 140 runqueues is complex
 Codebase was complex and difficult to debug

 Replaced by Completely Fair Scheduler (CFS) in 2007 (Kernel version 
2.6.23)
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