CS61065 Theory and Applications of Blockchain

Assignment - 1 (Autumn 2024)
Deadline: August 22 2024 EOD

Each student needs to solve and upload this assignment individually. Please
check the submission instructions at the end.

We have a zero-tolerance policy on plagiarism. Any form of plagiarism will
lead to zero marks for all the cases that will get detected. Also follow the
policies regarding use of Al tools as discussed during the first class.

There are no restrictions on the programming languages to be used. We would
prefer Python, but you can choose your favorite programming language.

Part A

Write a program to simulate a model for validating blocks in a blockchain. Each block has a set of
transactions and a nonce value. The program needs to identify a valid nonce such that the hash of the
block header starts with a specified number of leading zeros, and the sum of the ASCII values of all
characters in the hash is divisible by a given number D.

Input:
The test case contains B blocks. The first line of the input will be the integer B. This is followed by inputs
for B blocks. The first line of each block input contains an integer 7, the number of transactions in that
block. This is followed by T lines, each a string of length .S representing a transaction (the string will have
lowercase characters only). These T lines are followed by two integers, Z and D:

e Zis the number of leading zeros required in the hash.

e D is the divisor for the sum of the ASCII values of the hash characters.

Output:

For each block in the test case, print the valid nonce and the hash of the block header.

Note: While taking the SHA-256 hash, convert it to the hexadecimal string representation. The block
header is formed by concatenating all transactions followed by the nonce.

Note:



If there are odd number transactions in a block, consider the last block twice.

Constraints:

0<T<50
S=20
1<7<8
1<D<100

Example:

Input:

2

3
ysagiblcmbaawxdixzrs
pnbcgrefcugxnftimghe
tzniehbjkldzxucqtufw
2 4

2
vkqcjncnswfsdzddyiwl
fuewvxwdvypokxdtzxcl
34

Output:

Valid Nonce: 1670

Hash: 0080a354e367afc1f97d111adbd98195d7f9fd734ad45fb6bd8eal122e6a078f7
Valid Nonce: 3407

Hash: 000af16d3d27538838caa225430284b087fbd946187d528e5ad5ebb413ccd123

Explanation:

For the first block, the program finds the nonce 1670, which results in a hash starting with 2 leading
zeros, and the sum of the ASCII values of the hash characters is divisible by 4. Similarly, for the second
block, the nonce 3407 results in a hash starting with 3 leading zeros, and the sum of the ASCII values of
the hash characters is divisible by 4. The exact valid nonces and hashes will vary based on the input
transactions.



Part B

Write a program to construct blocks from a set of transactions and verify their integrity using RSA

cryptography. The program should form a blockchain structure of B blocks, linked by their respective
hashes. The genesis block contains a single, given transaction. Subsequent blocks contain T sets of
transactions. For each block, compute the RSA signature of the block header and verify if the previous
block's header hash is correctly embedded in the current block's signature.

For each block, the block version is '02000000'.

Block Structure:

Block Version: A fixed string '02000000' representing the block format.

Previous Block Hash: The RSA signature of the previous block's header.

Merkle Root: The root hash of the Merkle tree constructed from block transactions (computed
separately).

Transaction Data: A set of T transactions.

Nonce: A random value (reused from Part A's)

RSA Signature Generation:

L.

The block header (version, previous block hash, Merkle root, and nonce) is concatenated into a
single string.

This string is hashed using a secure hash function (e.g., SHA-256).

The hash is signed using the private key of the block creator.

Hash of the block header = Hash(block version + previous block header hash + merkle root)
*Merkle root computed separately.

Block Verification:

1.
2.
3.

Input:

Extract the previous block hash from the current block's signature.

Verify the RSA signature of the current block's header using the block creator's public key.

If the signature is valid and the extracted previous block hash matches the actual hash of the
previous block, the block is considered valid.

The input will be provided in a text file. Each line represents a block. The format for each block is as

follows:

The number of blocks (B).

For each block:
© Number of transactions: An integer T
o Transactions: T lines, each containing a transaction (string)
o Public key: A string representing the public key



Output:
For each block in the test case, print "Valid" or "Invalid" based on the signature verification result.
Additional Considerations:

e The first block (genesis block) is not included in the input. Therefore, the first block in the input
is actually the second block in the blockchain. The genesis block is formed of only one
transaction. This is the coinbase transaction with the string 'coinbase’.

Hash of the coinbase block header = Hash(block version + merkle root)

Example:

Input:

2

1
ysaqiblcmbaawxdixzrs
<public_key_string>
<private_key_string>
2
vkqcjncnswfsdzddyiwl
pnbcgrefcugxnftimghe
<public_key_string>
<private_key_string>

Output:
Valid
Invalid

Submission Instructions:

Both Part A and Part B of this assignment have to be submitted in Moodle.

For Moodle submission, use CSE Moodle: https://moodlecse.iitkgp.ac.in/moodle/login/index.php. We
have created a course page there with the course name “CS61065: Theory and Applications of
Blockchains”. You can join the course page using the key: STUD@A23BC


https://moodlecse.iitkgp.ac.in/moodle/login/index.php

